
A TA P L Y T I C S G U I D E B O O K

Part 2: Execution

Modern Product Management

https://taplytics.com/

Part II: Execution — 1

Why Phased Rollouts Are The New Standard7

The Modern Product Manager’s Guide To Continuous Deployment With Feature Flags6

FAQ: Client vs Server-Side Testing5

No-Code Web A/B Testing4

No-Code A/B Testing For Mobile Apps3

Introducing No-Code Experimentation To Increase Speed2

A/B Testing: A Modern Product Management Requirement1

Table Of Contents

In part 2 of the Modern Product Management series, we’ll be discussing executing a

high performance A/B testing and feature management program. The first half covers

strategies and best practices for developing web and mobile experiments and the

second half is dedicated to shipping faster, reducing risk, and enabling more successful

product launches with feature flags.

Part 2 - Execution

Modern Product Management

2 — Part II: Execution

The downfall of companies with traditional mindsets and business models like

Blockbuster and Sears serve as a wake-up call to remind us all that stagnation has

Why Experimentation?

How to create an experimentation culture4

Examples from industry leaders3

Where and what to test in your app2

Why experimentation?1

A/B testing (also known as split testing) is the practice presenting a sampling of users

with two versions of a screen or experience (often a current “A” baseline version vs. a

“B” variation with some visible change) and tracking user interactions with each version

to determine if one more positively influences user behavior or engagement.

You’re responsible for boosting metrics like retention, conversion, and engagement,

but also for creating a personalized experience for customers and collecting feedback

from them.

There shouldn’t have to be a tradeoff between customers and products as you decide

where to spend your time. The way to combat this dilemma is with experimentation.

Running hands-off tests to find out what delights your customers helps you collect

candid user feedback without consuming too much of your time. We’re here to walk

you through the world of mobile experimentation and how it could make a world of a

difference in your app. In this guide, we’ll explore:

A/B Testing: A Modern Product Management

Requirement

Part II: Execution — 3

Retention is the number of users who return within a certain timeframe - most apps

use 3 months (90 days) as the benchmark. Being able to keep users coming back to

Retention

For each of your key metrics, there are several levers in your product you can

experiment with to find out what moves the needle. Find out what areas you’re doing

well in and where you can make improvements to increase retention, engagement,

and conversion.

Where & What To Test In Your Funnel

Your team members feel motivated. According to a Forbes study, employees are

more likely to be engaged in their jobs when they are more involved in projects.

Hierarchy doesn't dictate product decision-making. Ideas aren't prioritized by

position — instead, the validity of everyone's ideas is fairly measured through test

results.

You're more likely to discover small, effective product changes.

Why An Experimentation Culture Is Valuable

never been the key to success. Customers are unforgiving to companies that are afraid

to push beyond their comfort zone and ignore the value of experimentation. This is

especially true as mobile becomes such an important part of modern business and

customer experiences.

It’s hard to predict the future, especially with customer behavior changing so rapidly.

This is where adopting experimentation comes into play. Experimentation allows

companies to listen to their consumers in real-time and iterate accordingly. To drive

engagement, ROI, retention, and any other metric, you need to create with empathy

and let your customers show you what they want!

4 — Part II: Execution

Getting opt in for notifications and, depending on your

app, location services, is crucial to retention and re-

engagement. Try providing specific context of what

value they will receive when you ask them to opt in

or the option to opt in later like Opendoor does.

If they’ve opted into push notifications, users open an app 88% more than users who

have not opted in. If they aren’t reminded of what value your app provides, they won’t

be engaged and are more likely to churn.

Push Notifications

Notification opt-in screens and messaging

Product tours that highlight your unique value-add features

Options for quick registration with social sign in

Try experimenting with:

The best time to create active users is during onboarding; effective onboarding has

been proven to increase user lifetime value by up to 500%. However, your users will

only stick around if they find value in your product during their first experience. This is

why it’s imperative to focus on improving your user onboarding and continuously

experiment with new ways to bring your users that value quickly.

Onboarding

your app and using it more than once can be difficult - studies show that 21% of users

abandon an app after only one use.

Part II: Execution — 5

A great example of this is Carrot. Carrot lets users

connect loyalty programs, which are attributed when

the user completes personal fitness challenges and

goal progression. They release new challenges every

few days (via push!) to bring users back into the app.

Flash sales or offers

Earning loyalty points or discounts

Unlocking new features

Use offers and incentives to bring users back and keep them visiting. Companies often

give up on users who aren’t visiting anymore. Of potentially churned users, 30% would

return if offered a discount, and 24% would return if offered exclusive or bonus

content.

Such incentives could include:

Create Incentives

Hopper sends travellers pushes that are

personalized according to in-app activity. This not

only creates value for the user, but retention and

engagement increase by pulling them back in to

look at flight options.

Messaging and personalization

Sending images in notifications

What time you send notifications

There are many ways that you can experiment with the use of push to increase app

launches:

6 — Part II: Execution

Personalized messages increase conversions by 27% compared to generic messages. It

keeps them more interested and spending more time engaging with content because it

appeals to their interests and preferences.

Personalization

Engagement can be increased by immediately

allowing users to browse without having to

create an account, like Ebay does. Only once

they’ve found what they’re looking for does the

user have to create an account.

Optional product tours

Immediate challenges or incentives

Providing the option to skip registration

Onboarding is mentioned again because of its importance in developing loyal, engaged

uses. It’s specifically important to engagement because you need to find the balance

between engaging them quickly and gathering enough user information.

Try experimenting with:

Onboarding

Engagement is the amount of time that your users spend inside your app. You want to

create a connection with your user so that they will become loyal. The sooner you can

get them hooked and make a habit out of your product, the better off you will be.

Engagement

The user is incentivized by more free points that are useful and easy to earn by

completing challenges.

Part II: Execution — 7

Length of Membership - How recently did they join?

User demographics - age, gender, location, time zone

Levels of engagement - sort by the last time they visited your app, or frequency of visit

One way that experimentation can uniquely help you create hyper-personalized

experiences is through segmentation. Experiments can be segmented to be sent to

any custom groups of users you like to discover how different types of users react

differently.

Want to know how users onboarded in last month reacted differently to a retention

push than old users? Or how different deals appeal to shoppers under the age of 25?

You can handpick what criteria qualifies a user to receive your experiment to find out!

Some segmentation ideas:

Segmentation

By asking users to pick their favourite teams

when they sign up, Bleacher Report creates an

engaging feed that is customized to news,

updates and standings that are interesting to

the user. This will create higher engagement,

since the user is more likely to find content they

want to consume.

Autofill settings or obsoletion of form fields

Homepage or marketplace layout

Push notifications and communications sent via email

Some ways to experiment with personalization in your app:

8 — Part II: Execution

For some apps, a key moment is the conversion of a freemium user to a paying one.

Experiment with the ask and the way that the information is strategically presented.

Remember: it’s all about them, so make sure you express the value they’ll get from the

upgrade!

Pricing & Upgrade Pages

Chick-fil-A was noticing that a lot of customers

were confused in their checkout flow, which

caused them to abandon their carts. By just

changing button copy, they increased

purchases by 6.9%!

CTA button copy

Methods of payments & autofill or autopay options

Number of steps or screens

Cart abandonment rates in apps can be as high as 82%. Find out what it is that has

your users abandoning ship at the last minute by running tests on the checkout flow.

Try experimenting with:

Checkout Flows

You want as many people to get to your app’s aha!’ moment as possible. Whatever it is

that completes their user journey (and defines your success!) can look completely

different depending on what kind of company you are - making a purchase, clicking

that CTA button, signing up, etc. Experiment with some different techniques that will

get more people to cross your finish line.

Conversion

Part II: Execution — 9

O
D

D
S

O
F

SU
C

C
ES

S

NUMBER OF EXPERIMENTS

Guaranteed Success

50/50 Odds

Simmons' 10,000 experiment rule simply states that “deliberate experimentation is

more important than deliberate practice in a rapidly changing world.” Avoid making

large, massive bets on one or two big projects. Instead, build the habit of running

smaller experiments at a faster cadence.

Rule Of Thumb

On Babbel’s pricing page, they highlight the 3

month option to catch your eye. Additionally, they

highlight in orange the cost/month to incentivize

the purchase of a longer plan.

Messaging and value proposition

The layout of the pricing and plan options

Timing of the ask - Is it a requirement once a certain level is reached? Is it a pop-up?

Try experimenting with:

10 — Part II: Execution

Next, they wanted to see if changing the artwork would contribute to increasing

total streaming hours across the product. They tested to find the best artwork for

each title over a period of days, then served that artwork to future watchers to see

if that would result in a higher number of hours streamed.

First, they experimented with a simple A/B test to see if they could increase

engagement by changing up the artwork by measuring click-through rates, play

duration, etc.

Netflix researchers estimate that if a typical user doesn't find something to watch in

the app within 60-90 seconds, they run the risk of getting bored and moving onto

something else.

By following an empirical approach, we ensure that product changes are not driven by

the most opinionated and vocal Netflix employees, but instead by actual data, allowing

our members themselves to guide us toward the experiences they love.

For example, the data team at Netflix found that users look at the artwork first before

deciding whether to click for more details around it:

Case Study - Netflix

Part II: Execution — 11

Set a regular cadence for testing so it becomes a consistent part of your team’s

patterns and thinking.

Establish a time frame. Think about the requirements of your experiment, and set

a time frame long enough to collect enough information to form insights.

Know how to measure your results before the experiment begins. Your tests are

useless if you're unable to collect your experiment results.

Test one thing at a time. With more than one variable, your test results aren't

meaningful because you can't pinpoint which factor is affecting your tests.

Having an established testing protocol keeps your team's test results accurate and

meaningful, regardless of who's controlling the experiment.

Step 2 - Practice Good Experiment Hygiene2

An A/B test you can implement to meet your goal

What needs to happen to achieve this goal

Your high-level goal

To map out these tiny steps, move backward from your major goal. Identify:

Step 1 - Start Small1

While it’s trendy to pay lip service to principles like “test don’t guess” or “move fast and

break things,” it can be hard to get your organization rapidly experimenting and

optimizing —especially when it runs against the way things have been done for years.

Here are four steps you can take to create an experimentation culture:

How To Build An Experimentation Culture

12 — Part II: Execution

Regularly analyze test results and communicate with others - Schedule time to look at

test outcomes and establish methods or channels for sharing insights with the key

teams so they can implement changes accordingly.

Schedule quarterly meet-ups for ideation & reviewing data - Have a quarterly meeting

to sync on testing priorities and review high-level experimentation insights with key

stakeholders from across your organization. This will help you make an effective

testing plan, maintain internal buy-in for A/B testing, and prioritize your experiment

roadmap.

Step 4 - Set A Regular Cadence4

By sharing experiment results, your team's testing becomes sustainable. Constantly

learning from each others' feedback, your colleagues have plenty of insights for

building and improving new tests in the future.

Not all A/B tests have clear winners or drive noticeable spikes in revenue or adoption.

Continuously testing small changes is the best way to optimize your site without

negatively impacting important metrics along the way. Sometimes, testing is about

learning what not to launch—so share learnings from the tests that cause “failures” as

well as the winners.

Step 3 - Communicate Results Back To Your Team3

Part II: Execution — 13

No-code experimentation facilitates cross-team collaboration because it removes one

of the biggest barriers to product development for companies that lack enterprise-

grade budgets: finite engineering and development resources. When your product and

marketing teams can easily run tests on their own, it ensures that developers stay

focused on adding value through their day-to-day tasks.

Previously, only companies with the resources to build in-house experimentation tools

No-Code Experimentation Frees Up Resources For Your Team

Taking a product from an idea all the way to release requires input from team

members throughout your organization. Being able to collaborate effectively across

these teams is the key to making product development as seamless and valuable as

possible.

Then why are 75% percent of cross-team collaboration efforts dysfunctional? Because

navigating the various pitfalls and potential issues that arise when working cross-

functionally isn’t always easy. It requires a culture of open and honest communication,

as well as a strong strategic approach to creating value for customers.

Fostering cross-team collaboration not only helps increase productivity but also frees

up resources for your team and makes innovation easier throughout the development

process. And a critical piece of collaborating well as a team is being able to experiment

and test your hypotheses, which is where no-code experimentation can help.

When your team understands how they work together and has the tools and

autonomy to refine these processes as they move forward, that makes achieving your

overarching goals simple.

Introducing No-Code Experimentation To Increase

Speed

14 — Part II: Execution

Combining no-code experimentation with a focus on cross-team collaboration helps you

work through the product development process faster without sacrificing quality. Teams

that have a clear sense of how they work together will grow and scale more effectively—

refining processes and workflows to deliver the most value possible to your customers.

Cross-Team Collaboration Simplifies Continual Iteration

could quickly deploy tests and learn what successfully engaged users or led to better

conversion rates.

Thanks to no-code testing tools like Taplytics’ cross-channel A/B testing, every team

within your organization can experiment collaboratively without the need for

development resources. This allows product teams to collaborate with their marketing

counterparts to deploy tests across websites, apps, and other connected devices. And

it provides actionable data they can use to inform product decisions in the future.

Being able to test autonomously frees up product, sales, and marketing teams to focus

on their individual goals as well. Instead of relying on engineering and product teams

to implement and execute tests, they can increase experiment velocity and any

learnings to analyze results to better understand how those experiments increased

conversions or reduced user churn.

“The best approach will vary from one company to the next, but at its heart lies the

challenge of transcending functional boundaries—a difficult achievement in itself,” said

Paul Leinwand and Cesare Mainardi in their book, Strategy That Works, an analysis that

included studying cross-team collaboration. “This means centralizing and systematizing

activity throughout your company while still fostering participation and

experimentation.”

No-code experimentation makes it possible for product, marketing, and engineering

teams to systemize experimentation and build a culture of collaboration.

Part II: Execution — 15

They’re able to do all of this because each member of your organization, from the

product managers defining the strategy to the marketers crafting messaging

campaigns, knows how to work together. They understand the underlying goals and

desired outcomes of every release, as well as the best way to communicate your

product’s value to potential customers.

Great cross-functional teams also understand that continual iteration and release are

built on top of a base of solid data—data that informs decisions and guides

experiments. And they know how to run these experiments autonomously. This not

only frees up developer resources to focus on building new and exciting products for

customers, but also helps each member of the team engage with their work on a

deeper level.

But improving your teams’ ability to iterate through the product development process

is just part of the equation. Effective cross-team collaboration cuts down on total

development time and helps you generate value from each release faster.

No-code experimentation gives your team the ability to deploy multiple experiments

simultaneously, which avoids the time-consuming process of deploying experiments

successively. When you combine this with the ability to test across multiple channels, it

ensures that each stage of the experimentation process is as streamlined as possible.

The ability to experiment faster across each of these channels makes collecting data

and proving hypotheses easier, which helps your team create a higher converting

product while improving the overall customer experience with each test.

Let’s say you have an idea for a new user onboarding flow, one that originates from

within your marketing team. That team documents their idea and the potential impact

they think it will have on the user experience and ships those details over to the

product team.

16 — Part II: Execution

One of the biggest benefits of cross-team collaboration is that teams from different

disciplines, backgrounds, and skill sets can work through innovative new ideas together.

To facilitate this kind of bottom-up innovation, try to foster connections between every

member of your team. To do that, you need to have a company culture that’s built on

trust and a shared understanding. Encouraging cross-team collaboration ensures that

each member of the team feels like their opinions are not only valid but that they’re

heard as well. Even the kernel of an idea can become a valuable and engaging product,

given that it’s visible to the entire team.

No-code experimentation further helps drive innovation and new ideas by enabling

teams to quickly apply their hypotheses to experiments. That means they can validate

their assumptions directly—bringing more fleshed out and interesting ideas to the rest

of the team. When collaborating teams can quickly see conclusive results to

experiments, that path to innovation is more straightforward, as winning ideas can be

validated and replicated with data rather than guesswork.

Cross-Team Collaboration Drives Innovation

The product team mocks up the new experience in wireframes and fleshes out

potential designs and requisite features. Once the idea is integrated into the

overarching product strategy, they define the requirements and send the project to

engineering for active development. Each stage of the product development life cycle

takes time and resources to complete, all of which are factored into the total time-to-

value (TTV) for your project.

When you’re able to cut down on the time it takes to create value for your business,

that helps build a clearer picture of the impact your team has on the company’s

bottom line. Using that knowledge, you can create more effective revenue and

resource projects for the future.

Part II: Execution — 17

No-code experimentation gives organizations of all sizes a way to improve cross-team

collaboration. It offers smaller organizations an effective shortcut that makes it possible

for cross-functional teams to learn, engage, and innovate more quickly without the need

for commitments of developer resources.

When cross-functional teams deploy rapid testing via no-code experimentation, every

team, not just those with the budget and resources of an enterprise-sized business, can

optimize experiences for their users.

No-Code Experimentation Makes Collaboration Easy

18 — Part II: Execution

Throughout this section, keep an eye out for tips from Kate and Dexter.

They’re our in-house testing experts who lead organizations through

high-impact experimentation programs with Taplytics Enterprise Services.

Nothing is worse than being responsible for your mobile app’s KPIs and growth, but

unable to do anything about it because you’re tight on resources, and don’t know a

thing about coding to boot. But what if we told you the experiments in this guide can

all be run by non-technical team members to optimize key areas in your mobile app?

That’s right, no coding required. At all. And they have all been proven to move the

needle on metrics like mobile engagement, retention, click-through rates, and

conversion.

So, here’s the thing.

These experiments really can be run with no coding at all, just as soon as your

engineering team installs the Taplytics SDK. Be sure to treat them to a nice lunch and

give them the heads up that our SDK is lightweight and secure. The installation will

take less than an hour (we promise!) to do. Et voilà! You now have access to a powerful

visual editor that lets you run experiments with a tap and a click. Looking for some

inspiration to get started? Let’s go through some of our most successful experiment

suggestions, which have been validated by our world-class clients.

When resources are tight, experimentation is right

No-Code A/B Testing For Mobile Apps

Part II: Execution — 19

Find out if providing additional on-screen
elements is distracting or confusing for
users.

HIDE ELEMENTS

Looking to get
started?

L O G I N W I T H F A C E B O O K

L O G I N

Looking to get
started?

L O G I N

When a user opens your app for the very
first time, what images and copy do they
see?

SWITCH UP YOUR SPLASH SCREEN

See results in just
two weeks!

S I G N U P

S I G N I N

A fitter you in just
two weeks!

It’s time to get
ready for summer!

Your onboarding screens are the first elements users will interact within your app, so

naturally, this will be one of the highest impact experiments that you can launch.

Optimizing this first experience can affect the number of users who complete the flow

and engage after that first session. Taplytics customers have seen registration and

purchase increases of 150% and 9%, respectively, by running onboarding flow

experiments proving how valuable an optimized onboarding screen is.

Experiment 1: Optimized Onboarding Screens1

20 — Part II: Execution

“Always align your timing with the content you’re
pushing - sending a lunch deal at 11:30 on a
Friday is a perfect example.”

Do your users want to hear from you in the morning
or the afternoon? It’s easy to find out!

TEST THE TIMING OF DELIVERY3

Greet users with a relevant offer or message when
they step into your store or within a specific proximity.

TRY GEOLOCATION TRIGGERED PUSHES2

Try fresh copy, emojis, and even images in your push
notifications.

EXPERIMENT WITH CAPTIVATING CONTENT1

3

2

1

Midweek Special
Happy Wednesday! Get 15% off your order

!
53 min agoSUSHI HOUSE

Clearance Event
Our annual clearance event is right around the
corner…seriously. Come visit and save 20%
with the code: CLEARANCE20

15 min agoFURNITURE PLUS

Summer Sale
Flights to Portugal are on sale now
for under $500 RT

"
1 min agoFLIGHT SAVER

Push notifications offer powerful ways to share compelling and actionable information

with your users to re-engage them with your app. The problem is, mobile users are

bombarded with dozens of pushes every day. By running a push experiment

campaign, a Taplytics customer saw a 133% lift in engagement for those users who

received the push. You can get creative in new ways and experiment with your pushes

to see what makes you stand out from the noise.

Experiment 2: Push Notifications2

Part II: Execution — 21

60 min ago / science

SpaceX gets its
first passenger for
a cool 35 million

45 min ago / music

Coachella - 3 days
in and our top
highlights

S U B S C R I B E

Subscribe to
NewsNow to access
premium content.

Get Premium

N E W S N O W Get unlimited access
with NewsNow
Premium!

S U B S C R I B E

S I G N U P

S U B S C R I B E

S U B S C R I B E

Change the color, shape, size, and
copy of your CTAs to dramatically
improve conversion rates.

EXPERIMENT WITH BUTTONS

Titles, paragraphs, and taglines are all
fair game for quick experimentation.

WORDSMITH YOUR COPY

Little details can have a significant impact when it comes to the copy and styling of a

call-to-action. What language persuades your customers to tap the buy button? Is it

“Buy”, “Buy it Now”, or “Add to Cart”? What about the button color? Should it be red,

green, or yellow? Even a 2% lift in purchases from a simple copy change is nothing to

scoff at and can be done in an instant with our visual experimentation tool. By

completing a simple CTA experiment, Taplytics customers have lifted click-through

rates by up to 60%.

Experiment 3: Conversion Elements3

22 — Part II: Execution

Flights
E X P L O R E

See AllLatest Deals

Brrr, it’s cold out!
It’s time to find the
perfect escape.

Flights
E X P L O R E

See AllLatest Deals

Winter is here…
Get out there and
enjoy it!

Brrr, it’s cold out!
It’s time to find the

perfect escape!

“If you’re nervous about including your entire user base in an experiment, that’s okay! You can
segment experiments so they’re only set to users with a specific demographic, join date, device,
and more.”

Your app should be eye-catching and intuitive to navigate, and different visual

representations of your app will appeal to your users more than others. A few simple

visual changes can give your app a completely new look and feel that might resonate

(and convert!) better. Makeovers don’t have to be complex – remember, these are all

no-code changes being made to the text, images, and buttons. Taplytics customers

have seen conversion improvements of +30% from visual experiments. If you’re

nervous about including your entire user base in an experiment, that’s okay! You can

segment experiments so they’re only set to users with a specific demographic, join

date, device, and more so you can slowly roll-out the changes.

Experiment 4: Aesthetics & Visuals4

Part II: Execution — 23

It’s hard to believe that all of these high-impact experiments can be launched without a

single line of fresh code. All of the examples you saw can be created in the Taplytics

Visual Editor or Push Notification Dashboard and shipped in less than a day.

Putting Your Experiments Into Action

Which offer, guarantee, or promise will
push the most shoppers over the finish
line?

TRY NEW TEXT

C O N F I R M O R D E R

Ships in 7 days or it’s free!

Total: $505.00

$135Qty: 1

Size: 11

Tan Boots

$225Qty: 1

Size: 40R

Tweed Blazer

Qty: 1 $150

Size: Large

Hazel JacketShopping Cart

Money back guarantee!

B U Y N O W

L E T ’ S D O I T

Sometimes less is more.
Identify if extra text or offers
enhance or distract from your
users’ checkout experience.

HIDE ELEMENTS

C H E C K O U T

You might also
be interested in
Ripped Jeans

$90Qty: 1

Size: Medium

Cropped Jeans

Qty: 1 $65

Size: Medium

Grey Hoodie

Shopping Cart

When it comes to mobile checkout design, you care the most about getting shoppers

to complete their purchase. We’re often tempted to make a last-ditch effort to increase

their cart size or value, which can sometimes be harmful. Experiment with what, and

how much, content you’re presenting in your checkout flows to maximize purchases.

By simplifying the checkout experience through experimentation, a Taplytics customer

saw a 6% increase in purchases and eliminated all customer service inquiries at

checkout.

Experiment 5: Checkout Clarity5

24 — Part II: Execution

Research by Omnisend reveals that landing pages are the least popular type of sign-up

form with marketers, yet they have the highest conversion rate (23%). Meanwhile,

pop-ups, the most popular type of enabled sign-up forms, have really low conversion

rates (only 3%).

What Makes A Great Product Landing Page (And

Why They Matter)

Experiments aren’t just for people in white coats. If you’re looking to boost your

product landing page conversions, A/B testing your landing page can have a massive

impact. HubSpot increased its blog subscribers by a whopping 128% simply by testing

a new checkbox on their landing page forms. That’s a huge payoff from such a small

change.

The concept of A/B testing is simple. It involves displaying two versions of the same

web page to visitors to determine which converts better. More often than not,

marketers don’t take the time to experiment and run A/B tests on their landing page.

According to HubSpot, “Only 17% of marketers use landing page A/B tests to improve

conversion rates.” That’s a surprisingly low number when you consider that landing

pages have the highest conversion rates of any type of sign-up form (23%).

Because web A/B testing can have such a tremendous impact on lead generation and

conversion rates, here’s how to optimize your product landing page, along with some

highly effective web A/B tests you can use right away.

No-Code Web A/B Testing: Easily Convert More

Customers

Part II: Execution — 25

Your value proposition is the problem your product or service is designed to solve. It’s

what makes you better or different than the competition and explains the exact benefits

consumers can expect to receive. Landing page value propositions should be succinct

Clear Value Propositions For Your Product Or Service

Your headline is a short, attention-grabbing statement that aligns with the message of

your campaign. They’re to-the-point messages designed to provoke thought or empathy

or matter-of-fact statements, like this one: “You get fresh, hot pizza delivered to your

door in 30 minutes or less—or it’s free.” To ensure your users see value in your offering,

it’s important to master the basic principles of headline-writing.

An Attention-Grabbing Headline

Your landing page image is a high-quality image, video, or animation that clearly and

immediately conveys the core message of your product or service. While landing page

images are often product photos, they don’t need to be a literal image. For example, a

picture of a cheetah sprinting could convey the speediness of a file transfer service far

better than a ho-hum picture of a server could. This is something you could A/B test to

see which image or video performs best on your website.

An Eye-Catching Graphic Or Video

While every landing page is different, five basic elements go into every successful

landing page.

Every single element on your product landing page should be carefully

considered and, ideally, A/B tested for its effectiveness.

2

Your product landing page represents one of the most powerful tools in your

customer conversion tool kit and is worthy of your time and investment.

1

This leads to two important conclusions:

26 — Part II: Execution

How well is the landing page performing, and where would you like to see

improvements? For example, you may want to increase your CTA button conversions

by 20% or get more people to download your ebook.

Analyze Your Current Performance1

To get started with web A/B testing, just follow the five steps below. Keep in mind that

you’ll need an experimentation platform like Taplytics, which enables you to set up and

run your A/B tests as well as analyze the results.

How To A/B Test Your Product Landing Page

Last but not least, your CTA is the critical touchpoint of your landing page, the place that

encourages your visitors to click and take the next step. Usually, a landing page CTA is

an easy-to-find, colorful button with copy that ties into your original value proposition,

such as, “Build my pizza” or “Start my free trial.” Avoid generic words like “Submit” or

“Go.”

A Compelling Call To Action (CTA)

Website visitors frequently look for social proof before making purchasing decisions.

Statistics from HubSpot show that a whopping 88% of consumers trust user reviews as

much as personal recommendations, which means you can leverage social proof and

testimonials to great effect. Forms of social proof include online reviews, customer

testimonials, industry certifications, and logos, ratings (four out of five is best), and

celebrity or expert endorsements.

Social Proof From Your Customers

and easy to scan and absorb. When creating a value proposition, always focus on the

benefits your product or service offers, not the features.

Part II: Execution — 27

Change your CTA button text. Experiment with different CTA messages. Try to

avoid generic messages, such as “Submit” or “Go.”

Change your CTA button color. Test different colors on your CTA button. Red, orange,

and green are favored by marketers, but which color is best is still open to debate.

CTA (Call to Action)

What Elements To A/B Test

Again, you’ll need software to do this. Taplytics software enables you to track your A/B

test results as they happen and provides a suite of comprehensive tools so you can

analyze the results and schedule rollouts of the best variants.

Analyze The Results5

To run your web A/B test, you’ll need an experimentation platform, like Taplytics.

Taplytics enables you to set up your landing page experiments over web, mobile, and

cross-channels and track the results in real-time.

Run Your Web A/B Tests4

Version A is your normal landing page with no changes, and Version B is the test page

with the new element you want to test. Version B should contain only a single changed

element. To test additional elements, create a new test page for each one.

Set Up Your Version A & Version B3

This might include new writing copy for a button, changing the color of a button,

adding a new checkout feature, etc. To identify which element is driving the results of

your A/B test, test only one element at a time.

Create A List Of Elements You Want To Test2

28 — Part II: Execution

Add a security badge. A recognizable security badge can help reassure

customers and push them over the line into a purchase.

Offer a guest checkout option. Make it easier for new customers to check out

with a guest checkout option. Research shows customers are 1.2 times more likely

to choose guest checkout than logging in.

Add new payment options. Make it easier for customers to check out on your

website by offering a range of checkout options — for example, PayPal, Google Pay,

Amazon Pay, cryptocurrency, etc.

Checkout Options

Add a limited-time offer. Create a sense of urgency by offering a benefit for a

limited time only.

Experiment with different offers. Some options include free business templates,

free samples, a complimentary ebook, a free white paper, etc.

Test different shopping incentives. These might include free shipping, a money-back

guarantee, a more generous return policy, etc.

O!ers & Incentives

Update your product descriptions. Update your product descriptions to include

more compelling value propositions.

Add a subhead. Try adding a compelling subhead under your main headline to

give the reader more information.

Try different headline text. Test out different headlines and A/B test them to see

which ones are most effective.

Copy (Headlines, Subheads, Descriptions, Etc.)

Part II: Execution — 29

With Taplytics Web A/B testing, you can easily set up tests for all of the above variants

on your product landing page, track the results in real-time, and analyze the results —

all without writing a single line of code. We make it simple to measure the impact of

your experiments with flexible goal-tracking and integrations, while our AI assistant can

suggest areas for improvement.

Change your icons. Experiment with different symbols. Icons should be instantly

recognizable (not too cryptic) and help customers to navigate better.

Iconography

Compare an image vs. a video. Test the difference in effectiveness between a

static image vs. a video or animation.

Change up your images. Experiment with different image types (photos, graphics,

diagrams), sizes, and locations on the landing page.

Imagery

30 — Part II: Execution

There’s a running myth that companies with large engineering teams have enough

resources and bandwidth to do more complex forms of testing. Those myths strongly

hint that server-side testing is the optimal solution in those instances.

However, while there is some truth to that myth, the reality is that it all depends on how

much bandwidth there is within your engineering department. It helps each product or

marketing team to determine the complexity of the experiment in question, and then

align with engineering on whether this particular test is something that will require a lot

of their time.

If the answer is ‘yes, it will require a lot of their time,’ ensure that there is enough

bandwidth among the engineers who are very familiar with the ins and outs of the

server to implement a proper server-side experiment. On the other hand, if the answer

is ‘no, those experiments don’t require a lot of technical support,’ it would benefit the

product/marketing teams to implement more forms of client-side testing. This allows

How do you run experiments with a small engineering team??

How you should measure the effectiveness of those tests

What types of tests you want to run

Why you need to run experiments

Experimentation cultures are built upon a willingness to test, iterate, and optimize

product experiences to the needs of the customer. The question for product,

marketing, and engineering managers becomes - how do you go about doing that?

There are pros and cons to both options, and your team should decide:

FAQ: Client vs Server-Side Testing

Part II: Execution — 31

The ability to manage SDK devices is a key variable in answering this question. You want

to make sure that your team is sufficiently capable of implementing and monitoring

experiments across all of these devices to get a real cross-channel understanding of

how users respond to your experiments.

Suppose you have dedicated resources to individually support web, mobile, and OTT

experiments. If that describes your situation, you can probably manage those various

How do you run cross-channel experiments??

This is another ‘it depends’ type of question.

Some of our clients have been able to build out all of the requirements for a server-side

test in as little as 3-5 days of development work. In other instances, where the

experiments are more complex, the setup time has required a full sprint to implement.

In terms of running the experiment itself, the minimum amount of time recommended

for either a server-side or client-side experiment is 2 weeks. This gives you enough

leeway to monitor user behavior on the page or in the app over both weekday and

weekend periods, allowing you to analyze peaks and lulls in traffic.

The key component to consider is the size of your user base. To draw real conclusions

from the experiment, you need enough traffic volume to understand what works and

what doesn’t. If there's a lot of activity on your site, you can draw those conclusions

closer to that 2 week experimentation period. On the other hand, if activity is low, you

may require more time to draw concrete conclusions.

What’s the ideal length of time to run experiments??

the lighter, less technical experiments to run independent of the engineering

department and allows engineers to focus solely on the elements of the experiment

that require their support.

32 — Part II: Execution

Historically, client-side experiments can cause what’s known as the “flicker effect.” This

is a result of a live webpage or in-app experience rendering on a device, and then

suddenly becoming overridden by the elements of the experiment.

When a device is loading an experience, a network request is sent to the server that

hosts the experience to render the on-page layout onto the device. But a client-side

experiment sends a second network request to pull in the elements of the experiment

itself. This second server request is what’s known as the “flicker effect.”

Users will notice the change if messaging or visuals suddenly update on the second

server request. There may also be an effect on page or app loading times due to the

multiple requests sent to the server.

Modern tools have virtually rendered this flicker to be non-existent; however, the

conversation is still relevant as it pertains to site conversion and SEO. A 1-second speed

improvement to your site or native app can result in over 25% more conversion which

puts an even greater emphasis on the need for lightweight, high performing tools -

either client or server-side.

Why is the “flicker e!ect” such a concern??

 tests using a client-side solution.

However, in this particular use case, server-side testing could be the simpler solution. A

team that can implement cross-channel experiments directly from the server can

simplify the development process, the resources required to build the experiment, and

capture all of the user behavior data in one centralized location. If your team has the

bandwidth to build a server-side experiment, this would be the ideal approach to a

cross-channel test.

Part II: Execution — 33

SEO implications are a common question raised by our clients, particularly when it

involves web or mobile site tests. There are notable differences between client-side and

server-side testing and the SEO effect.

For client-side experiments, the good news is that changes to the javascript on the page

typically are not indexed by Google during the experimentation phase. That means the

experiment itself is unlikely to appear in or have an influence on SERP rankings. The

content within the experiment will only become fully indexed if it’s rolled out in full

across the site experience.

Site speed is a critical component of Google’s decision to rank sites appropriately. As a

result, client-side testing can impact site loading times which, by extension, can impact

your SEO.

In contrast, server-side testing has no impact on site loading times. However, since the

experiments are implemented at the server level, they are far more likely to become

indexed by Google. This means that your experiment could render in SERPs and

indirectly influence SEO.

What kind of SEO impact is there from either form of experimentation??

34 — Part II: Execution

Feature flags (also known as feature toggles) are a software development technique

that allows you to turn specific functionality on and off without writing additional code.

They provide you with the ability to make dynamic changes to your code without the

need to deploy a new version.

These dynamic changes give you more control over how and when you release your

new product or feature. Using feature flags means it’s easy to:

What Are Feature Flags?

There’s a lot of risks involved in releasing a new product. Not only do you need to

release on time, but you also have to ensure that the experience is as seamless as

possible for your customers and your team. Lagging behind schedule due to poor

release management or causing unnecessary downtime due to bandwidth or system

constraints can have a direct and lasting impact on your relationships.

That’s why it’s so important to maintain as much control over the release process as

possible—which is where feature flags come in. This tool allows you to roll out or

rollback features easily, so you’re able to minimize any negative impact on your

customers and team.

They’re also at the core of continuous deployment. Without feature flagging, it’s

challenging to achieve the right balance between speed and quality inherent to the

continuous release process.

When you understand what feature flags are, how to implement them, and why they’re

so powerful, it’s easy to create a better release experience.

The Modern Product Manager’s Guide To

Continuous Deployment With Feature Flags

Part II: Execution — 35

Feature flags enable, disable, or hide specific features for testing or release. They give

you a way to manage your application’s behavior for testing or release with select user

groups. Whether you’re making changes to your codebase, your website, or the

functionality of an individual process, feature flags can help.

Let’s say you’re planning a redesign of your product and want to roll it out to customers

slowly so as not to impact their overall experience with your service. Feature flags give

you the ability to control which users are first to see the redesign, when they’ll be able

to see it, and how long it will take for all users to have access to the feature.

How Do Feature Flags Work?

Used correctly, feature flags are one of the most high-leverage tools you have at your

disposal for any upcoming release.Releasing small batches of code as soon as they’re

ready is much less risky than big feature releases.

The key is finding a way to build a culture of constant deployment around these

constraints. Building, shipping, and iterating features quickly without compromising on

quality enables better product development. You constantly learn what people want

through your releases and can easily make improvements to keep users happy.

Feature flags provide the agility needed for constant, high-quality deployment. They

allow you to launch features in real-time to a subset of users so you can quickly and

safely resolve potential issues before fully releasing them to all users.

get more visibility into the impact of your release.

control the individual user’s experiences, and

collect actionable user feedback,

test features in production,

36 — Part II: Execution

Feature flagging is the key to continuous development. They are the software

development technique that gives engineers the ability to create branching production

trees—the underlying functionality that helps you develop on an individual feature, or

aspect of a feature, without impacting the code that’s live for customers. Feature flags

can also be used to run tests with specific segments of your user base while in

production.

This image outlines the branching process, where developers work on an upcoming

feature alongside the master branch or production branch. Whenever you create a new

feature, this practice ensures you’re not making changes to the customer-facing product

without full confidence in its security and usability. You break off from the main trunk of

your production pipeline to create the feature and merge it back once it’s complete.

Starting at the “common base” in the example above, developers can use a feature flag

to split off an additional branch. This allows them to actively develop the new feature

without making changes to the codebase their users interact with.

Once the developers are done working on the feature, they’ll merge it back into the

master branch, essentially turning off the feature flag they created in the first place. This

brings the code they created on the feature branch back into production.

Feature Flags Enable Continuous Deployment

In the event of issues, such as your application crashing due to increased user

interaction, you can roll the feature back to its previous state immediately. Think of it

like flipping a switch.

There are two main functions of feature flagging for development and product teams.

While marketing teams can make use of this functionality to A/B test site design and

messaging, feature flags provide more direct value to developers and product

managers.

Part II: Execution — 37

When product teams use feature flags for a product release, it helps you make small

and impactful changes quickly. This decreases the overall time it takes to release a new

product or feature and helps you provide more value to users on an ongoing basis.

Combine this with the fact that you can easily test new features while in production, and

it’s easy to see how powerful feature flags can be.

Consider the way you normally release a new product or feature. Your planning and

development process makes it easy to execute a release management plan, but any

change to the overall experience of using your product can have a lasting impact on

your relationship with customers. Once you’re done planning and active development,

the risk becomes all about how your upcoming change impacts the user experience.

Feature flags help you mitigate the risk of a botched release through a canary release,

where you roll out a new feature to a small subsection of users first—before making it

available to everyone. This phased release schedule minimizes the impact on customers

by giving your team more control of the experience at every step of the process.

Feature flags provide a level of feedback that demos and other staged tests can’t

provide. Users are interacting with the new feature just as if it had been rolled out fully,

so it provides a more accurate picture than a simulated test. You get to see your feature

in a live environment.

Inform Product Development

The more developers you have working on a specific feature, the more complex

feature flagging becomes.

It’s important to understand that while feature flagging helps create a more seamless

experience for developers, it does add complexity to your system. Each new branch

exists independently from the other until it’s merged back into the master, so always

make sure you’re branching as efficiently as possible.

38 — Part II: Execution

Providing powerful insights, feature flagging provides the necessary insights to deploy

constantly. You understand which features will be the most successful with users, so

you feel confident in gradually releasing more and more on a greater scale.

“ To me, the feature flag space is the parameter space that I get to explore to

optimize whatever metrics that I want to optimize. If you are constraining

yourself to this very limited boolean on/off space without strings, floats, etc.

you’re putting artificial limits on how fast you can explore the space and

about how all of the knobs at your disposal work. “

Josh Wills — Software Engineer @ Slack

Beyond the live environment aspect, feature flags also have the technical capability to

provide more powerful insights than most testing. Greater than their basic on and off

function, feature flags can have multivariate flags that allow users to be targeted at a

very narrow level. They let you customize the number and type of variations returned

to users so you can understand their preferences on a greater, more precise level.

Say, for example, your product is an e-commerce app. A multivariate flag could let you

try different discount offers on users depending on their familiarity with your business.

If the user is new, for example, you could set the discount to display as “30% off.”

Instead of just having an on-off toggle, multivariate feature flags allow you to employ

conditional logic and exert granular control over deployment. You learn which variants

will perform best with different user groups so you can release features fully with

confidence.

Josh Wills, Software Engineer, Search, Learning, and Intelligence at Slack, agrees about

the power of multivariate flags.

Part II: Execution — 39

Before flagging, companies would wait years before releasing features. They needed a

lot of time to prepare because if there was a mistake with a fully released feature, it

would take quite a bit of time to rewrite the code. Netscape, for example, took four

years to rewrite code for Mozilla.

Mobile developers today still have to wait before fully releasing features for app store

approvals. These reviews generally take over a week so teams can’t immediately release

changes to their app.

Ship Faster

To build a sustainable product, you have to keep improving it with new features and

functionality. But what happens when your “improvements” turn out to be mistakes that

hurt your UX? If the feature has been fully released, every user is negatively impacted by

the update.

Feature flagging eliminates that risk. It allows you to provide value to users with

confidence because it makes changes easily reversible and controlled in distribution.

You can do roll-outs of features to small test groups and easily disable the feature by

turning the flag off instantly.

The system works through a check and balance mechanism. While the feature is only

being released to a small subset, the feature is checked for bugs. If any issues are

detected, the developers can use a kill switch to turn off the flag and stop the code from

reaching users.

This control and reversibility of feature flagging enable top development teams to

constantly deploy changes without worry. They can safely try out ideas in a live

environment without the risk of affecting all users if an issue occurs.

Reduce Risk

40 — Part II: Execution

This slow deployment pace created by the approval process means you’re not

constantly getting user feedback on new changes to drive more iteration ideas—

another factor that slows down deployment.

Users choose when and if to upgrade your app. Even when the app store approves

your new features, you still have to wait for users to upgrade and enjoy the

changes.

If there are any mistakes in your new feature, you have to send an update to be

reviewed again for the app store to patch your product. This means waiting even

more time before users can enjoy your new app feature.

The Apple review process takes an average of 8 days, a relatively long waiting

period. Developers want to get new features out to users as soon as possible, so

they spend a lot of time doing quality assurance and testing before the app review

in hopes that their changes will get accepted on the first try.

Traditional, full feature launches on mobile face a major roadblock: getting approval

from app stores.

Instead of being able to instantly implement changes, deployment is slowed down by

the preparation and waiting involved in this approval process.

The Mobile Flywheel Of Feature Flagging

With feature flagging, companies don’t have to spend this much time implementing

changes. Flags can easily be turned on or off, so the company doesn’t need to spend

lots of time rewriting code if there’s an issue. They can just disable the feature flag

instantly.

With this on and off function, feature flagging speeds up deployment. Rather than

spending time rewriting code after a faulty release or waiting for an app store review,

developers only need to enable or disable a flag to turn a feature on or off.

Part II: Execution — 41

Together, these three aspects create an environment that drives continuous

deployment.

Feature flags reinforce the benefits from small changes and continuous delivery, providing a

flywheel to get you round the loop faster.

Informed: Feature flagging allows you to constantly get valuable user feedback

that you can implement in further iterations to improve your app.

Quickly: You don’t need to spend loads of time rewriting code if there’s a mistake

with your new feature—you just immediately turn the flag off.

Safely: You can limit feature releases to small subsets of users. As you resolve

issues and make improvements, you can gradually release them to more users.

To speed up deployment, you can release features without needing app store approvals

through feature flagging. This mechanism allows you to enable or disable features

instantly and select when and which subsets of users see the features. Feature flagging

drives continuous deployment because changes can be made:

42 — Part II: Execution

Perform the release. Roll out your new feature using feature flags from Taplytics.

Monitor the progress of your release in case any issues arise and you need to

follow your contingency plan.

5

Define a rollout/rollback contingency plan. There’s always the potential to run

into issues during a release, so you need to have a strategy for how you’ll react in

that situation. Ensure a seamless experience for both your customers and your

team with a contingency plan.

4

Create a schedule for how the release will progress while you’re in active

development. This schedule should define the time it takes to finish

development and test the new feature as well as your intended release date.

3

Build feature flags targeting those users. Once you understand what your users

need, the problems they face, and how they interact with your tool, it’s time to

build a new feature that offers a solution. This is the active development process

where you use feature flags to create a branch in your code.

2

Determine the segment of your user base for the initial release. Whenever you

release a new product or feature, there’s a part of your user base you know will

benefit from it the most. Determine this group by analyzing relevant user

insights and using that information to identify users who would benefit from

feature flags.

1

To get started, have developers create the feature flags in your codebase first. Once

they’re created, your product teams can use them to target specific segments of your

user base and roll out features with absolute control.

How To Run A Phased Release With Feature Flags

Features are released quickly and safely to user subsets. In a loop, this continuous

deployment through flagging offers powerful user insights that drive even more

releases.

Part II: Execution — 43

Any new release comes with inherent risks, so it’s important to find strategies that make

you feel more confident throughout the process. Feature flags are one of the most

powerful ways to manage your release more effectively. When every touchpoint during

the release process can have a lasting impact on your customers, you need to have a

process in place that minimizes risk.

With Taplytics, you can target specific segments of your user base, roll out and roll back

features with the click of a button, and follow a timed-release schedule. This makes it

easy to release with confidence, ensuring an effortless and efficient release for both

your customers and your team.

Release With Confidence Using Feature Flags

Track the impact on your customers and team. Continuous deployments are built on

the idea that more data leads to better overall product decisions. So once you’ve

completed your phased release, do a post-mortem (we use easyretro.io) to understand

any areas of opportunity to improve feature flags in the future.

44 — Part II: Execution

Phased rollouts are the process of building and refining your product over multiple

iterations. The core methodology helps you gain more control over various aspects of

your development pipeline, from inception to launch day.

Building a phased rollout process for your team cuts down on the potential for scope

creep by allowing everyone to reevaluate their workflow at every stage of the process.

Looking at each phase together also helps you take a long-term view of the product

experience, which you can use to define more effective deliverables at each stage.

What Is A Phased Rollout?

Building a new product is a complex process with many potential points of failure. All

members of your team need to work together seamlessly to move the project forward

and ensure each task is completed in succession. Any delays can significantly impact

your ability to launch the type of product your customers truly need.

A phased rollout helps you reduce the risks of these failures and makes it easier for

product teams to plan and execute larger projects effectively. It forces product teams

to examine their progress on a more consistent basis and make changes in real-time.

By iterating continuously through the development and release process, everyone has

the opportunity to increase their product’s value and refine your release plan before

it’s in the hands of actual users.

Combine this with the increased control inherent in phased rollouts, and you’re able to

build a smoother product experience for your team and your customers. Each stage of

the process will have clear goals and objectives and key results (OKRs) to measure your

efficiency across the board. Without this clarity, you’ll never be able to create an

amazing product experience for your customers.

Why Phased Rollouts Are The New Standard

Part II: Execution — 45

Launch

Release planning

Code review

Quality assurance and user testing

Active development

Goal setting

Project planning

Customer research

When you think about your product launches in phases, it lets you create a more

realistic plan for your team. Each part of the product development process is

represented as a phase, from ideation to active development, all the way through to

release. Structuring launches in this way helps you leverage the underlying drivers that

move your project forward.

In phased rollouts, each stage is functionally independent of the others. This makes it

easier to budget required resources for each phase, whether you’re referring to the

monetary investment or bandwidth of your team.

To understand why, consider how many steps go into launching a product live to your

customers:

Accurate Planning1

The phased development methodology helps you manage your product releases by

breaking up each launch into smaller parts that are easier to execute. These more

manageable components make it simpler to plan larger projects effectively and help

your team see how their work impacts overarching goals.

When everyone understands the impact of a project on the macro level, it’s easier to

build a product that’s truly and immediately valuable to your customers.

5 Ways Phased Rollouts Helps You Launch Better

46 — Part II: Execution

Iterating through each phase of a roll-out systematically helps you see how individual

tasks relate to others in your product pipeline. This understanding allows you to

prioritize which tasks need to be completed first based on their potential impact and

helps you communicate those dependencies to your team.

Visualizing dependencies this way helps you manage the overall scope of your product

launch better. Each task is represented by a block that spans the calendar and which

team or individual is responsible. We can see here that the design team first needs to

complete the homepage before the build team can get started on setting up their

servers. This makes it easy to see how each phase affects the other stages of your

project, making your determination of how to allocate resources much more concrete.

Whenever you complete an individual phase, it’s simple to reassess your progress

quickly and make changes when required. It’s also a great way to communicate these

priorities to your team.

Simple Prioritization2

Prospecting the number of work hours and the monetary investment required for all

of these steps at once is a considerable task. But breaking up each process into an

individual phase makes setting expectations significantly less complicated. You’ll know

that the research and planning phases will require more investment from your product

and user experience teams, where active development and QA testing will need more

developers and engineers.

Once you’ve adopted a phased rollout process, gauging how long each task will take is

much clearer. With this clarity, you’re empowered to communicate accurate timetables

and requirements to your team from the start. This translates into a more easily

executable product launch across the entire process.

Part II: Execution — 47

With phased rollouts, you aren’t expected to make perfect product decisions. When

you create separate phases for all the work required in your product launch, it helps

you assign more manageable KPIs and objects. When a phase is complete, you look at

the overall progress of your project and make any necessary adjustments before

moving on to the next stage.

Transparent Progress Tracking4

Product launches involve a lot of different moving parts, which can be difficult for

teams to conceptualize when they’re busy executing their individual tasks. Creating

well-defined phases for any upcoming release makes it easier for your teams to see

how their work impacts the project as a whole.

This increased visibility gives your team the context they need to hold themselves and

their colleagues accountable. When you’re working through larger projects with

dependent tasks, this kind of individual accountability is key. Your team needs to trust

that everyone else is working at the same level to move the project forward.

Think back to our Gantt chart example. If your developers lag on building the website

template, that pushes backtesting and the launch date. Doing phased rollouts

minimize the potential for these issues by clearly communicating how each part of the

project works together.

An additional benefit of this clarification is that more visibility makes it easier to

showcase wins throughout your team. Each team member will understand the work

required to complete each phase of the development process and will see when

people complete those early. This boosts engagement and creates a collective team

ethos built on trust and shared goals.

Clearer Team Responsibilities3

48 — Part II: Execution

Phases span a small unit of time, so any adjustments you need to make will happen

faster. You’re able to roll back updates and fix issues directly, without causing delays or

putting undue stress on your team.

As you become more comfortable with the phased rollout methodology, you’ll also be

able to approximate how much time it takes to execute different types of work. This

understanding helps you define more achievable OKRs and provide more accurate

Being able to make updates on the fly helps you refine your product before it gets to

customers and ensure you’re providing them with value.

Part II: Execution — 49

The phased rollout process helps your product team execute projects with more clarity

and direction. It empowers everyone to track their progress, make quick decisions, and

launch products that are tied to users’ needs. All this translates to a better overall

experience and more visibility of why you’ve made certain decisions for your product.

When you’re building out the product development process, visibility is the key to

achieving the kind of shared understanding of customer and team needs that drives

every project toward your overarching business goals.

Phased Rollouts Helps You Launch Better Products

According to a Gartner survey, 45% of product launches are delayed at least one

month. The underlying reason for these delays often ties back to poor project planning

and an unclear division of labor. Following the phased rollout, the method helps you

better understand the scope of a product launch and minimize the risk of these

oversights.

By building out small work units, you’re less likely to overtax your team with too many

requirements. Each phase is self-contained, so you’ve decreased the chances that one

task will negatively impact another. And you gain more headspace to check whether

deliverables are achievable based on your team’s current bandwidth and time

constraints.

This knowledge also helps offset the potential for poor time management, as you can

adjust each phase to account for any potential issues as they occur.

Reduced Scope Creep5

timelines for your team. Each phase is an opportunity to assess your current process

and make the necessary changes.

